Problem: g(f(x,y),z) -> f(x,g(y,z)) g(h(x,y),z) -> g(x,f(y,z)) g(x,h(y,z)) -> h(g(x,y),z) Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {3} transitions: h1(5,1) -> 5,3 h1(6,2) -> 5,3 h1(5,2) -> 5,3 h1(6,1) -> 5,3 g1(1,2) -> 5* g1(1,10) -> 5,3 g1(2,1) -> 5* g1(2,9) -> 5,3 g1(1,1) -> 6* g1(1,9) -> 5,3 g1(2,2) -> 5* g1(2,10) -> 5,3 f1(1,2) -> 10* f1(1,6) -> 6,3 f1(1,10) -> 9* f1(2,1) -> 9* f1(2,3) -> 3* f1(2,5) -> 5,6,3 f1(2,9) -> 9* f1(1,1) -> 9* f1(1,3) -> 3* f1(1,5) -> 5,6,3 f1(1,9) -> 9* f1(2,2) -> 9* f1(2,6) -> 6,3 f1(2,10) -> 9* g0(1,2) -> 3* g0(2,1) -> 3* g0(1,1) -> 3* g0(2,2) -> 3* f0(1,2) -> 1* f0(2,1) -> 1* f0(1,1) -> 1* f0(2,2) -> 1* h0(1,2) -> 2* h0(2,1) -> 2* h0(1,1) -> 2* h0(2,2) -> 2* problem: Qed